
S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 164 | P a g e

Detecting Aspect Intertype Declaration Interference at Aspect

Oriented Design Models: A Database Approach

Ahmed Sharaf Eldin*, Maha Hana**, Shady Mohammed Elsaid***
*(Department of Information Systems, Faculty of Computers and Information, Helwan University, Egypt)

**(CIC Cairo Deputed from Helwan University, Egypt)

***(Department of Information Systems, Faculty of Computers and Information, Helwan University, Egypt,

Department of Computer Science, Faculty of Computers and Information Systems, Um Al-Qura University,

Makkah Al-Mukaramah, Saudi Arabia)

ABSTRACT
Implementing crosscutting concerns requires aspect oriented developers to be enabled to introduce some mem-

bers to core concerns modules along with other. This may lead to a problem of interference among modules,

either between classes and aspects or among aspects themselves. Such conflicts may cause program to crash at

runtime. Interference problem is addressed but with complex solutions that become more complicated propor-

tionally with the project size. In this work a relational database approach and relational algebra is used to detect

intertype declaration interferences in aspect oriented design models in order to capture conflicts in an early stage

before having it as runtime error. Detection is done in an approach not that complex as the previous ones.

Keywords – Aspect Oriented Programming, Databases, Interference Detection, Intertype Declaration, Rela-

tional Algebra.

I. INTRODUCTION
Aspect oriented programming – AOP – appears

to enable software developers to address crosscutting

concerns. If a behavior being developed is needed

across a range of software, then it is named a

crosscutting concern and implemented as an Aspect.

For example authentication task that is needed in

several modules in banking system that can be

viewed as being developed horizontally over these

classes [1] [2].

Crosscutting concerns introduce code scattering

problem in conventional development environment,

which occurs when a single functionality is spanned

over several units, or it is just duplicated chunk of

code [3] [4]. Code tangling represents another

problem when two or more concerns are at the same

class and dependent on each other and cannot be

disassociated [3]. Therefore a development paradigm

is needed to address those problems, which is aspect

oriented programming [5].

AOP resolves the previously mentioned

limitations by developing the crosscutting concerns

as independent modules therefore the overall

modularity of the developed software is enhanced

[6].

AOP targets crosscutting concerns via concept of

obliviousness that means programmer doesn't have to

care about where the coded aspect will be used inside

the code of the entire system [7]. Thus, completely

independent modules – aspects – will be developed

that increase the overall system productivity and

reducing code complexity by resolving crosscutting

concerns problem.

Aspects may interfere with each other because of

weaving – injecting – code at the compile time into

another code. Research done in [6] [8] [9] shows the

interference among aspect and its causes. The

targeted interference type here is that one resulted

from introducing new members to base classes or

other aspects at the runtime. The work presented here

detects introduction conflicts at design level, instead

of being detected at compile time or even runtime as

an error.

The rest of the paper is structured as the

following: section two illustrated AOP interference

problem. Section three demonstrated the related work

in AOP interference detection problem. Section four

explains the detection approach using relational

database model and formal query language. Section

five includes an example for the proposed solution.

Finally, the conclusions and future work are in

section six.

II. Aspect Interference
Aspects may interfere with each other or with

their base classes in several forms. First, several

aspects addressing the same join point may interfere

together as there is no fixed rule for aspect execution

order. This is called crosscutting specifications

interference that is mainly caused by the usage of the

wildcard operator (*) that matches any return value

from a method, which causes accidental joinpoints.

RESEARCH ARTICLE OPEN ACCESS

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 165 | P a g e

Second, join points may change due to weaving of an

aspect that may add new join points to the code or

removes existing join points. Other aspects could be

affected due to these changes. This is called aspect-

aspect conflicts [6]. Third, aspect may change some

variables those are required for other aspect

behaviors. This may cause circular dependencies

between aspect and base class; so it is called base-

aspect conflicts [6].

Forth, interference occurs when aspects have

introductions – declarations – that are contradicting

with each other due to use of inter-type declaration or

structural superimposition [9]. Such a conflict makes

contradiction among concerns are required to be

achieved, which gives the name concern-concern

conflicts [6]. This can occur in several ways, an

aspect introduces new members – variables or

methods – to another aspect or class. If the aspect or

class has a member with the same name as the

introduced one then interference will occur.

III. Related Work
A. Code Level Detection

A graph-based model used in [10] to detect

intertype declaration conflicts by converting the

aspect oriented source code, written in Java and

AspectJ, structure to a graph model and the intertype

declarations, part of code written in AspectJ, to a

graph transformation rules that is to be applied to the

graph model. In this model each program element is

mapped to a graph node with a unique label to this

element. The element node has primarily two edges,

the first one called isa to represent its type of the

element, whether it is a class, aspect, method,

interface, etc. The second edge called named that

holds the actual name of the element. Transformation

rules are applied as edges to this graph model and

then conflicts can be detected. Figure 1 shows an

example of graph representation to a sample

program. Using this approach is getting complicated

along with the program size. Thus, a simple program

of 200 elements to be represented in graph adjacency

matrix, complexity of O(N
2
), will cost 40000

comparisons. What if 1000 elements or more?

Fig. 1 Graph Representation to a Sample AOP

Program with Intertype Declarations [10]

Program slicing is used in [11] to investigate the

woven code – byte code – as it is dependent on

AspectJ programming language. A slice is

representing a module which can be an aspect or a

class. Slices are investigated against intersection; if

two slices intersects then they interact.

Unit testing is used in [12] [13] to detect

interference in aspect oriented program. When aspect

<A> requires a unit test that is added by aspect ,

and vice versa between and <A> it is kind of

circular dependency between <A> and . Conflict

between aspects can be determined when an aspect

suppress a unit test that is required for another aspect,

for example an aspect <C> changes a field that is

required for aspect <D>. Dependency conflict

detected when aspect <E> issues a unit test that is

required for aspect <F>. In other words, aspect <E>

existence is required for aspect <F> functionality.

Figure 2 shows those types of interference detection

respectively. Pentagon represents a unit test, octagon

represents an aspect, arrow represents <<issue>>

direction, dashed circular-end line represents

<<require>> direction, and the lightning bolt

represents <<suppress>> direction. The main

drawback of this approach is lacking of base/aspect

interference detection.

Circular Dependency

Conflict Interference

Dependency Interference

Fig. 2 Aspect Interference Detection using Unit

Testing

B. Model Level Detection

Modeling aspect oriented software provides a

good way to check software before actual coding

phase. Theme/UML and UML extension mentioned

in [14] and [15] respectively needs a formal way to

transform them into a computerized form in order to

facilitate the model checking process. In [16] a

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 166 | P a g e

technique named MATA – Modeling Aspects using a

Transformation Approach – was introduced to

specify and compose aspects based on graph

transformation. Graphs are then used in [17] to

analyze aspect interference and in [18] to detect

interference in UML-based aspect oriented models.

Those techniques suffer from complexity of the

algorithm being developed and limited project size.

IV. Intertype Declaration Interference

Detection

Aspects and classes in aspect oriented modeling

have relationships like those in object oriented

modeling. Using the relational modeling technique, a

database is resulted to resemble a UML-based aspect

oriented model. Thus, for any creation to an aspect,

class, or any of their members a record is added to

the corresponding table. Figure 3 shows this database

schema in order to understand the relational algebra

written to extract intertype declaration interference.

In the following there are relational algebraic

expressions to extract the intertype declaration

interference types. First, aspect introduces a variable

to another aspect has a variable with the same name.

Second, aspect introduces a variable to a class has a

variable with the same name. Third, aspect introduces

a method to another aspect has a method with the

same name. Forth, aspect introduces a method to a

class has a method with the same name. Fifth, an

aspect introduces a member – variable or method – to

a base class or another aspect, while another aspect or

more introduces members with the same name.

The last one is considered to be the trickiest one

as due to the obliviousness nature of aspect oriented

paradigm. For example, a software engineer may

design an aspect (X) to handle a specific crosscutting

concern with a member (M) introduced to another

concern (A), at the same time anther software

engineer may design an aspect (Y) that implements

another crosscutting concern deals with concern (A)

and introduces a member (M) to it. This type of error

cannot be detected at design time and if those aspects

are not compiled together it's a runtime error.

Fig. 3 Aspect Oriented UML-based Correspondent Database

a. Aspect/ Aspect Variable Interference

The concept behind the following is that a

variable is intertype interfered if it's declared as

intertype to another aspect and the affected aspect has

a variable with the same name regardless to its data

type. By performing the last join the relation type

InterferingVariables contains those aspect variables

interfering with other aspects' variables telling the

causer and the affected aspects.

 R1 (OwnerAspectID, OwnerAspect)π ID,

Name(Aspect)

 R2(VarID, VarName, IntertypeAspectID,

AspectID)

 π ID, Name ,IntertypeAspectID ,AspectID

(AspectVariable)

 R3 R1⋈OwnerAspectID=AspectID R2

 R4 σ IntertypeAspectID ≠ Null (R2)

 R5 R1 ⋈ OwnerAspectID=IntertypeAspectID R4

 R6 R1 ⋈ OwnerAspectID=AspectID R5

 InterferingVariables

 R3⋈ R3.OwnerAspectID = R6.IntertypeAspectID AND

R3.VarName=R6.VarName R6

b. Aspect/ Class Variable Interference

The concept behind the following is that an aspect

variable is intertype interfered with class variable if

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 167 | P a g e

it's declared as intertype to this class and the affected

class has a variable with the same name regardless to

its data type. By performing the last join the relation

type InterferingVariables contains those aspect

variables interfering with other classes' variables

telling the causer aspect and the affected classes.

► R1 (OwnerAspectID, OwnerAspect)

 π ID, Name(Aspect)

► R2(AsVarID, AsVar, AspectID,

IntertypeClassID)

 π ID, Name, AspectID, IntertypeClassID (AspectVariable)

► R3 σ IntertypeClassID ≠ Null (R2)

► R4 R1 ⋈ OwnerAspectID=AspectID R3

► R5(CVarID, CVar,OwnerClassID)

 π ID, Name, ClassID (ClassVariable)

► R6 (CID, OwnerClass)π ID, Name(Class)

► R7 R5 ⋈ OwnerClassID=CID R6

► InterferingVariables

 R4⋈ AsVar= CVar AND IntertypeClassID=CID R7

c. Aspect/ Aspect Method Interference

The concept behind the following is that an aspect

method that is declared as intertype one to another

aspect interferes if this aspect has another method

with the same name regardless to the return type or

the parameters. By performing the last join the

relation type InterferingMethods contains those

aspect methods interfering with other aspects'

methods telling the causer aspect and the affected

aspects.

 R1 (OriginalAspectID, OriginalAspect)

 π ID, Name(Aspect)

 R2 (MethodID, Method, AspectID,

IntertypeAspectID)

 π ID, Name, AspectID,

IntertypeAspectID(AspectMethod)

 R3 R1 ⋈ OriginalAspectID=AspectID R2

 R4 σ IntertypeAspectID ≠ Null (R2)

 R5 R1 ⋈ OriginalAspectID=AspectID R4

 R6 R1 ⋈ OriginalAspectID=IntertypeAspectID R5

 InterferingMethods R3⋈

 OriginalAspectID=IntertypeAspectID AND R3.Method = R6.Method R6

d. Aspect/ Class Method Interference

The concept behind the following is that an aspect

method is intertype interfered with class one if it's

declared as intertype to this class and the affected

class has another method with the same name

regardless to its return data type or parameters. By

performing the last join the relation type Interfering

Methods contains those aspect methods interfering

with other classes' methods telling the causer aspect

and the affected classes.

► R1 (CID, CName)π ID, Name(Class)

► R2 (CMID, CMethod, ClassID) π ID, Name,

ClassID (ClassMethod)

► R3 R1 ⋈ CID=ClassID R2

► R4 (AsMethodID, AsMethod, IntertypeClassID,

AspectID) π ID, Name, IntertypeClassID, AspectID

(AspectMethod)

► R5 σ IntertypeClassID ≠ Null (R4)

► R6 R5 ⋈ AspectID=ID Aspect

► InterferingMethods R3⋈ CID=IntertypeClassID AND

CMethod = AsMethod R6

►

e. Aspect-Aspect/ Aspect-Class Member

Interference

The concept behind the following is that this

interference type occurs if intertype members from

different aspects target the same concern either core

or crosscutting and those members have the same

name. the following expressions extracts the

interference in case of a member is a variable.

 R1 σ IntertypeClassID ≠ Null (AspectVariable)

 R2 R1 ⋈ AspectID=ID Aspect

 R3 R2 ⋈ IntertypeClassID=ID Class

 R4 σ (R3)

 Result R4⋈ R4.AspectVariableName =

R3.AspectVariableName AND R4.IntertypeClassID = R3. IntertypeClassID

AND R4.AspectID <> R3.AspectID R3

V. Case Study: Customer Account
The following case, shown in figure 3,

demonstrates an example based on [19] for aspect

oriented UML-based class diagram models a part of

bank customer account management. First, there is a

class represents three of the core concerns of any

account: balance inquiry, deposits, and withdrawals.

Second, there are two aspects represent the

crosscutting concerns for any account transaction:

Authentication and Authorization. In this model there

are five typical interference of intertype declaration

kind. Table 1 contains a snapshot of the actual data in

the database design in figure 2 concordant with the

sample UML-based aspect model in figure 4 is used

to facilitate the queries detects the interference within

this model.

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 168 | P a g e

Fig. 4 UML-based Aspect Oriented Model

Class

ID NAME
ACCESS

MODIFIER
PARENTID

12 Account public null

ClassMethod

ID NAME
ACCESS

MODIFIER

STA

TIC
FINAL

ABSTRAC

T
RETURN TYPE

CLASS

ID

16 getBalance public 0 0 0 float 12

17 setBalance public 0 0 0 void 12

18 withdraw public 0 0 0 void 12

19 deposit public 0 0 0 void 12

Class Method Param

ID TYPE METHOD ID

17 float 17

18 float 18

20 float 19

Class Variable

ID NAME TYPE ACCESS MODIFIER
STAT

IC
CLASS ID

6 NO int public No 12

7 Lock boolean public No 12

8 Balance float private No 12

Aspect

ID NAME
ACCESS

MODIFIER
PARENTASPECT

10 Authentication public null

11 Authorization public null

Aspect Variable

ID NAME TYPE
ACCESS

MODIFIE

ASPEC

T ID
STATIC

INTERTYPE

CLASSID

INTERTYPE

ASPECTID

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 169 | P a g e

R

20 Balance float private 10 No null null

21 Lock
boolea

n
public 10 No 12 null

22 Owner string public 10 No 12 null

23 limit int public 11 No null null

24 privilege int public 11 No null null

25 Owner string public 11 No 12 null

26 privilege int public 10 No null 11

Aspect Method

ID
NAM

E

ACCESS

MODIFI

ER

STATIC

FI

NA

L

ABST

RACT

RETUR

N TYPE

ASPE

CT

ID

INTERTYPE

CLASS ID

INTERTYPE

ASPECT ID

7

auth

entic

ate

public 0 0 0 boolean 10 null null

8
auth

orize
public 0 0 0 boolean 11 null null

9 lock public 0 0 0 boolean 11 null null

10
unlo

ck
public 0 0 0 boolean 11 null null

11
with

draw
public 0 0 0 void 11 12 null

12
depo

sit
public 0 0 0 void 11 12 null

13 lock public 0 0 0 boolean 10 null 11

14
unlo

ck
public 0 0 0 boolean 10 null 11

Aspect Method Param

ID TYPE METHOD ID

12 float 11

13 float 12

Pointcut

ID NAME ON ACTION
ASPECTI

D

CLASS

 METHOD ID

ASPECT

METHOD ID

5 pc1 call 10 16 null

6 pc2 call 10 17 null

7 pc3 call 10 18 null

8 pc4 call 10 19 null

9 pc1 call 11 18 null

10 pc2 call 11 19 null

PointcutAdvise

ID NAME POINTCUTID

4 Before 5

6 Before 6

8 Before 7

10 Before 8

11 Before 9

12 After 9

13 Before 10

14 After 10

Table 1. Aspect Oriented UML-based Model Corresspodant Data

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 170 | P a g e

VI. Results
By applying SQL queries based on the relational

algebraic expressions mentioned in the previous

section the following results shown in table 2 come

out. First, Privilege variable is detected as an

interfering member declared in Authentication aspect

"OwnerAspect" and the aspect cause this interference

is the Authorization aspect "IntertypeAspect" field.

Second, Lock variable is detected as an interfering

member declared in the Account class "OwnerClass"

as a normal member and Authentication aspect has it

as intertype member declared to Account class, and

interfering with its member Lock.

Third, the two methods lock() and unlock() are

detected as interfering methods between aspects as

they are declared basically in the aspect

Authentication "OriginalAspect", while they are

declared in as intertype members to this aspect at

Authorization aspect "IntertypeAspect". Forth, the

methods withdraw() and deposit() declared in the

aspect Authorization "Owner Aspect" are intertype

members interfere with those original members at

class Account and its methods withdraw and deposit.

Fifth, the members that can be declared in two or

more aspects and intertype declared to another unit

class or aspect are detected such as the example of

the variable owner that is declared within two aspects

Authorization and Authentication "Aspect1 and

Aspect 2" as intertype member to class Account

"AffectedClass" that now has two members with the

same name. This type of conflicts cannot be detected

till runtime, and then crashes the software being run.

Table 2. Aspect Oriented UML-based Model Intertype Interferences Detected

Aspect/Aspect Variable Interference

OWNER

ASPECTI

D

OWNER

ASPEC

T

VARNAM

E

INTERTYPE

ASPECT ID

INTERTYPE

ASPECT

10
Authenti

cation
privilege 11 Authorization

 Aspect/Class Variable Interference

AS

VARI

D

ASPECT

VAR

OWNER

ASPECT

INTERTYP

E

CLASS ID

CLASS ID
OWNER

CLASS

21 Lock Authentication 12 12 Account

 Aspect/Aspect Method Interference

ORIGI

NAL

ASPEC

TID

ORIGIN

AL

ASPEC

T

INTE

R-

MID

OR-

MID

INTER

METH

OD

NAME

ORIGIN

AL

METHO

D NAME

INTERTYPED

ASPECT ID

INTERTYPED

ASPECT

10
Authenti

cation
13 9 lock lock 11 Authorization

10
Authenti

cation
14 10 unlock unlock 11 Authorization

 Aspect/Class Method Interference

As

Method

ID

As

Metho

d

Owner

Aspect

Interty

pe

ClassI

D

CI

D
Class

CMI

D
Class Method

11
withdra

w

Authori

zation
12 12

Accoun

t
18 withdraw

12 deposit
Authori

zation
12 12

Accoun

t
19 deposit

 Aspect-Aspect/ Aspect-Class Member Interference

Aspect1 ID Aspect1 Aspect2 ID Aspect2 Variable
Intertype

ClassID
AffectedClass

10 Authenti

cation

11 Authoriz

ation

Owner 12 Account

11 Authoriz

ation

10 Authenti

cation

Owner 12 Account

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.164-171

 www.ijera.com 171 | P a g e

VII. Conclusion and Future Work
Aspect interference problem is one of the most

complicated problems in AOP. Despite of AOP

importance but the probability of unexpected

behavior of software being run and complexity of

resolving this problem, many developers prefer OOP

and avoiding AOP with all its advantages. Using

relational model to represent the corresponding

UML-based aspect model and relational algebra

provided a simple way to detect one of the

interference types – intertype declaration interference

– at design time regardless to the size of the software

to be designed. The work presented here can be done

using XML and X-Query instead of traditional

DBMS and SQL thus it can be used within CASE

tools easily for local development or can be

implemented over a database server for distributed

teams targeting the same project.

References

[1] Berg, Klaas van den, Conejero, Jose Maria and

Chitchyan, Ruzanna. AOSD ontology 1.0

public ontology of aspect orientation. s.l. :

Common Foundation for AOSD, 2005. p. 90,

Report.

[2] J.D. Meier, David Hill, Alex Homer, Jason

Taylor, Prashant Bansode, Lonnie Wall, Rob

Boucher Jr., Akshay Bogawat. .NET

Application Architecture Guide,. 2nd Edtion.

s.l. : Microsoft Corporation., 2009.

[3] Harbulot, Bruno. SEPARATING CONCERNS

IN SCIENTIFIC SOFTWARE USING

ASPECT-ORIENTED PROGRAMMING.

Computer Science, Manchester University.

Manchester : Center of Novel Computing,

2006. p. 194, PhD Thesis.

[4] Dessì, Massimiliano. Spring 2.5 Aspect-

Oriented Programming. [ed.] Sneha Kulkarni.

Olton : Packt Publishing Ltd., 2009. pp. 13-16.

978-1-847194-02-2.

[5] Aspect-Oriented Programming. Gregor Kiczales,

John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Videira Lopes,. Finland :

Springer-Verlag, 1997. European Conference

on Object-Oriented Programming (ECOOP).

pp. 220-242.

[6] Aspects: Conflicts and Interferences (A

Survey). André Restivo, Ademar Aguiar. 2007.

Actas da 2ª Conferência de Metodologias de

Investigação Científica. pp. 145-153.

[7] Robert E. Filman, Daniel P. Friedman. Aspect-

Oriented Programming is Quantification and

Obliviousness. Research Inistitution for

Advanced Computer Science. s.l. : Workshop

on Advanced Separation of Concerns, 2001.

[8] Katz, Emillia, et al. Detecting Interference

Among Aspects. Computing Department,

Lancaster University. Lancaster : European

Network of Excellence on Aspect-Oriented

Software Development, 2007. p. 38, Report.

[9] Durr, Pascal, Bergmans, Lodewijik and Aksit,

Mehmet. Reasoning about Behavioral

Conflicts between Aspects. Enschede :

University of Twente, 2007. Technical Report

. TR-CTIT-07-15.

[10] A Graph-based Approach to Modeling and

Detecting Composition Conflicts Related to

Introductions. Havinga, Wilke, et al.

Vancouver : ACM International Conference

Proceedings Series, 2007. International

Conference on Aspect Oriented Software

Development, AOSD 2007. pp. 85-95. 1-

59593-615-7.

[11] Balzarotti, Davide and Monga, Mattia. Using

Program Slicing to Analyze Aspect Oriented

Composition. 2004.

[12] Towards detecting and solving aspect conflicts

and interferences using unit tests. Restivo,

André and Aguiar, Ademar. Vancouver,

British Columbia, Canada : ACM, 2007.

Proceedings of the 5th workshop on Software

engineering properties of languages and aspect

technologies.

[13] Team, MSDN. Unit Testing. MSDN. [Online]

Microsoft, 2012. [Cited: 1 21, 2013.]

http://msdn.microsoft.com/en-

us/library/aa292197%28v=vs.71%29.aspx.

[14] Clarke, Siobhán and Baniassad, Elisa. Aspect-

Oriented Analysis and Design: The Theme

Approach. Crawfordsville : Addison Wesley

Professional, 2005. 0-321-24674-8.

[15] A UML Extension to Graphically Represent

Aspect Oriented Systems Perspectives.

Ferreira, Helivelton Oliveira and Dias, Luiz

Alberto Vieira. Las Vegas : IEEE, 2010.

Seventh International Conference on

Information Technology. pp. 1312-1313.

[16] Whittle, Jon and Jayaraman, Praveen. MATA:

A Tool for Aspect-Oriented Modeling Based

on. Graph Transformation. [ed.] Holger Giese.

Models in Software Engineering. Berlin :

Springer Berlin Heidelberg, 2008, Vol. 5002,

pp. 16-27.

[17] Staijen, Tom and Rensink, Arend. A graph-

transformation-based semantics for analysing

aspect. Natal, Brazil : Workshop on Graph

Computation Models,, 2006.

[18] Ciraci, Selim, et al. A graph-based aspect

interference detection approach for UML-

based aspect-oriented models. [ed.] Shmuel

Katz and Mira Mezini. Transactions on

aspect-oriented software development.

Heidelberg : Springer-Verlag, 2010, Vol. VII,

pp. 321- 374.

[19] Stein, Dominik. An Aspect-Oriented Design

Model Based on AspectJ and UML.

Management Information Systems. Alfter,

Germany : University of Essen, 2002. p. 203,

MSc Thesis.

